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Abstract. The proton and neutron density distributions, one- and two-neutron separation energies and
radii of nuclei for which neutron halos are experimentally observed, are calculated using the self-consistent
Hartree-Fock-Bogoliubov method with the effective interaction of Gogny. Halo factors are evaluated as-
suming hydrogen-like antiproton wave functions. The factors agree well with experimental data. They are
close to those obtained with Skyrme forces and with the relativistic mean-field approach.

PACS. 21.10.Gv Mass and neutron distributions – 21.60.Jz Hartree-Fock and random-phase approxima-
tions – 25.43.+t Antiproton-induced reactions

1 Introduction

In the last years, more and more experimental evidence
concerning neutron distributions in nuclei has become
available [1]. In particular, it has been found that several
neutron-rich nuclei display a neutron skin or even a neu-
tron “stratosphere” called the neutron halo. Such proper-
ties of neutron distributions have been predicted by the
asymptotic density model [2], the relativistic mean-field
theory [3], and Hartree-Fock calculations with Skyrme
forces [1].

With the increasing amount of experimental data
available, halo factors can now be used as an additional
test of nuclear effective interactions. Namely, microscopic
approaches should be able to reproduce not only binding
energies and charge radii, but also the detail of density dis-
tributions, especially density tails at large distance from
the nucleus center.

The aim of this work is to perform such a test for the
effective interaction proposed by Gogny [4]. While many
applications have shown the high quality of this force for
describing a wide range of nuclear properties [4–7], no sys-
tematic study in this direction has been made up to now.
The mean-field theory employed with the Gogny force
is applied to nineteen halo nuclei found in [1]. We cal-
culate neutron and proton density distributions at large
distance, one- and two-neutron separation energies, and
the halo factors related to the probability of annihilation
of antiproton from atomic-like orbitals. These results are
compared with experimental data and with Hartree-Fock
calculations performed with the SLy4 interaction [8].

In sect. 2, we recall the form of the Gogny effective in-
teraction and we describe the method by which the results
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mentioned above are obtained numerically. In sect. 3, neu-
tron separation energies and density distributions at large
distance from the center of the nucleus are analyzed. In
sect. 4, the prescription employed for evaluating halo fac-
tors is given and the theoretical values obtained are com-
pared with experimental data. Conclusions and plans for
further investigations are presented at the end of the pa-
per.

2 Description of the approach

The Gogny two-body effective nuclear interaction has the
following form [4]:

V12 =
2∑

i=1

exp
[
− |r1 − r2|2

µ2
i

]

×(
Wi +BiP̂σ − HiP̂τ − MiP̂σP̂τ

)

+t3
(
1 + x0P̂σ

)
δ(r1 − r2)

[
ρ

(
r1 + r2

2

)]γ

+iWLS(σ1 + σ2)·
←
∇12 ×δ(r1 − r2)∇12 + VCoul.. (1)

The first line represents two finite-range terms (i = 1, 2),
with the usual superposition of Wigner, Bartlett, Heisen-
berg and Majorana spin-isospin contributions. ri is the
space coordinate of nucleon i, and P̂σ and P̂τ are the
exchange operators of spin and isospin variables, respec-
tively. The second line of eq. (1) describes a two-body
zero-range density-dependent interaction. The last line
contains a two-body zero-range spin-orbit term and the
Coulomb potential between protons. Here, ∇12 = ∇1 −
∇2, and σi is twice the spin operator of nucleon i.
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The set of parameters adopted since 1983, called
D1S [7], is

µ1 = 0.7 fm, µ2 = 1.2 fm,

W1 = −1720.3MeV, W2 = 103.639MeV,

B1 = 1300MeV, B2 = −163.483MeV,

H1 = −1813.53MeV, H2 = 162.812MeV,

M1 = 1397.60MeV, M2 = −223.934MeV,

t3 = 1390.60MeV fm3(1+γ), x0 = 1,

γ = 1/3, WLS = 130MeV fm5.

Hartree-Fock-Bogoliubov (HFB) self-consistent cal-
culations have been carried out with this interaction,
with the purpose of extracting binding energies and nu-
cleon density distributions. Similar results employing the
Hartree-Fock (HF) method, i.e. ignoring pairing correla-
tions, have also been derived in order to compare them
with those obtained with the Skyrme HF method. All cal-
culations have been performed in spherical symmetry. The
method used is described in detail in ref. [4]. The assump-
tion of a spherical mean-field may seem inappropriate for
those halo nuclei which ground states are deformed. How-
ever, since halo factors depend essentially on the slope of
the density at very large distance from the nuclear sur-
face, such a simplification should be sufficient for a first
estimate of their magnitudes. In the same spirit, the effect
on nuclear densities of correlations beyond the mean-field
approximation, as those coming from oscillations around
a fixed shape or from large amplitude collective vibrations
[9,10] has been ignored in the present study. One should
nevertheless keep in mind that neglecting the increase of
neutron and proton radii caused by deformation and cor-
relations should lead to a slight underestimation of halo
factors in most nuclei.

Our calculations are performed by expanding the HFB
one quasi-particle states on finite harmonic oscillator (HO)
bases. A crucial point in this method is to carefully
choose the two parameters: number of shells (NMAX) and
harmonic-oscillator frequency h̄ω, on which these bases
depend. This is especially needed in the present study
where the behaviour of single-particle wave-functions at
large distance from the center of the nucleus has to be ac-
curately determined. The method we have employed con-
sists of choosing, for each value of NMAX, the h̄ω value
that minimizes the HFB binding energy. Then NMAX is
increased until convergence of the HFB binding energy is
obtained.

Application of this method to 58Ni is illustrated in
figs. 1, 2 and 3. Figure 1 displays the variations of the
HFB energy (B) with h̄ω for NMAX = 16. The energies
of the minima of the curves B(h̄ω) are plotted in fig. 2 as
functions of NMAX. One observes that convergence of the
HFB binding energy is obtained for NMAX = 16 in this
nucleus. As shown in fig. 3, a well-defined energy minimum
is then obtained in the (h̄ω,N)-plane. This procedure has
been employed for the nineteen halo-nuclei considered in
the present study.
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Fig. 1. Hartree-Fock energy obtained with the Gogny force in
58Ni versus the frequency (h̄ω) of the harmonic-oscillator basis.
The theoretical points are interpolated by 2nd-order polyno-
mial in h̄ω.
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Table 1. The results of the Hartree-Fock-Bogoliubov calculation with the Gogny D1S force for 19 halo nuclei [1]. The harmonic-
oscillator basis parameters: the shell number NMAX and the oscillator frequency h̄ω, the binding energies B, one Sn and two
S2n neutron separation energies, the equilibrium deformation β2 and the theoretical f and experimental halo factors are listed
in the table.

Nucleus NMAX h̄ω (MeV) |B| (MeV) Sn (MeV) S2n (MeV) β2 [11] f fexp [1]
48Ca 14 16.442 416.838 11.574 15.735 0 1.77 2.35± 0.35
58Ni 16 15.470 505.161 11.663 21.562 0 1.10 1.30± 0.2
96Zr 16 13.479 825.345 7.958 12.202 −0.19 2.04 3.7± 0.6
96Ru 16 15.070 827.972 9.616 17.366 0 1.14 1.10± 0.2
100Mo 18 12.962 856.871 8.070 12.980 −0.27 2.53 4.10
104Ru 18 14.256 888.612 9.233 14.001 −0.28 2.24 4.30
106Cd 16 14.254 903.668 10.688 18.138 0 1.38 0.60± 0.1
112Sn 16 14.212 952.850 10.962 18.438 0 1.56 —
116Cd 16 13.761 984.182 8.861 14.793 −0.28 2.29 —
124Sn 16 13.261 1049.635 9.113 14.683 0 2.47 —
128Te 16 13.558 1078.166 9.643 15.568 0 2.02 4.3± 1.1
130Te 16 13.205 1094.724 11.008 16.558 0 2.32 4.2± 0.4
144Sm 18 14.141 1197.497 12.838 20.981 0 2.55 < 0.5
148Nd 16 11.898 1216.816 8.458 9.831 0.23 2.40 4.8± 0.9
154Sm 18 12.351 1253.112 8.674 10.659 0.28 2.56 2.2± 0.4
160Gd 18 12.222 1290.583 7.406 10.816 0.31 3.27 5.8± 1.9
176Yb 18 10.182 1397.546 8.999 12.423 0.31 3.77 8.0± 0.6
232Th 18 9.947 1747.601 7.724 9.540 0.21 4.00 5.4± 0.8
238U 18 10.227 1778.929 7.893 10.059 0.24 3.70 5.8± 0.8

In order to illustrate the influence of the HO basis
parameters on densities, we have plotted in fig. 4 the log-
arithm of the neutron density distribution log ρn of 58Ni
versus the radial distance r for a few values of h̄ω. One
can see that ρn is sensitive to the chosen h̄ω only in the
peripheral region r > 8 fm, a region where ρn is smaller
than 10−10 fm−3.

3 Results

The parameters of the HO bases employed for all the halo-
nuclei studied in the present work are gathered in table 1.
The HO frequency h̄ω corresponding to the minimal HFB
energy and the number of shells NMAX above which the
energy does not change any more are shown for each nu-
cleus. The HFB energy and the one- and two-neutron sep-
aration energies Sn and S2n are also listed. The separation
energies have been found by subtraction of the HFB en-
ergies of neighbouring isotopes

Sn(Z,N) = B(Z,N)− B(Z,N − 1), (2)
S2n(Z,N) = B(Z,N)− B(Z,N − 2). (3)

Odd-isotope energies have been calculated using the block-
ing version of the HFB theory, as described in ref. [4].
In each nucleus, the blocked quasi-particle state has been
chosen as the one having the experimentally known spin
nearest to the neutron Fermi surface. Quadruple deforma-
tions β2 taken from ref. [11] are given in table 1 in order to
indicate which nuclei are deformed in their ground states.
Let us recall that all nuclei are considered as spherical in
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Fig. 4. Logarithms of the neutron density distribution ρn as
functions of the radial distance r in 58Ni. The different curves
correspond to different values of the harmonic-oscillator basis
frequency h̄ω.

our calculation. The last two columns of table 1 display
calculated and experimental halo factors, the meaning of
which will be explained in sect. 4.

The one- and two-neutron separation energies of these
nuclei are compared with the experimental values [12] in
figs. 5 and 6. In these figures, the differences between ex-
perimental and theoretical separation energies are plotted
as functions of the proton number Z.

Calculated neutron separation energies agree with ex-
periment within ±1MeV in spherical nuclei, except for
48Ca, 96Ru, 130Te and 144Sm. In these nuclei, the neu-
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tron Fermi level is located in the vicinity of a major shell
gap, where the single-particle level density is underesti-
mated in the present mean-field approach. A proper de-
scription of separation energies in nuclei near closed shells
would require to take into account correlations beyond
the mean-field—as RPA ground-state correlations—and
the induced spectroscopic factors and single-particle level
displacements. Let us also note that, in the calculation
of Sn’s, odd nuclei have been assumed to be spherical,
which leads to a systematic overestimation of theoretical
values. In the case of deformed nuclei, one observes that
Sn’s usually are overestimated, while S2n’s often are un-
derestimated with the present spherical approach.

Calculations of proton and neutron density distribu-
tions have been performed for the nineteen halo nuclei
using the HF and HFB procedures with the Gogny inter-
action. For the purpose of comparison, similar results have
been derived also with the SLy4 parametrization [8] of the
Skyrme force [13] using the HF method.
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Fig. 7. Proton (dashed and dotted lines) and neutron (solid,
thin dashed lines) density distributions obtained from Hartree-
Fock calculations with the Gogny force (GoHF) and with the
Skyrme SLy4 force (SkHF), versus the radial distance r.

The proton and neutron density distributions ρn(p) for
58Ni are presented in fig. 7. The Skyrme interaction gives
proton and neutron densities lower by � 10% in the nu-
cleus interior and, consequently slightly larger proton and
neutron radii than the Gogny force. However, the tails of
the densities obtained within the two approaches do not
differ significantly from each other. Let us recall here that
the parameters of the Gogny force have been determined
in order to allow for the inclusion of ground-state corre-
lations in the description of one-body observables. As a
consequence, nuclear radii are expected to be accurately
reproduced by the Gogny force only when correlations be-
yond the mean-field are included.

The difference between the proton and the neutron
distributions at large distance is important for the inves-
tigation of halo effects. In order to illustrate the detailed
structure of these distributions, several functions of the
densities ρn(p) which enter halo factors (see sect. 4) have
been plotted. A complete set of such results is displayed
in fig. 8 for 160Gd as an example. Similar plots for the
remaining eighteen nuclei are shown in the next eight fig-
ures.

The upper part of fig. 8 represents the density dis-
tributions for protons (solid lines) and neutrons (dashed
lines) obtained with the Gogny force without pairing cor-
relations (GoHF), with pairing correlations included (Go-
HFB) and with the Skyrme force SLy4 (SkHF) with-
out pairing correlations. The densities are plotted up to
r = 12 fm, a radial distance above which they are lower
than 10−10 fm−3. The middle row shows the logarithms
of these densities, and the leftmost diagram of the lowest
row the difference log ρn − log ρp.

One can see that the densities computed with and
without pairing correlations are very close to each other,
although the contribution of pairing to the binding energy
is of the order of 10MeV.
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Fig. 8. Density distribution results obtained in 160Gd. First row: Density distributions for protons ρp (solid lines) and neutrons ρn

(dashed lines) obtained from Hartree-Fock calculations with the Gogny force D1S (first column), from Hartree-Fock-Bogoliubov
calculations with the Gogny force (second column), and from Hartree-Fock calculations with the Skyrme force SLy4 (third
column). Second row: Logarithms log ρn(p) of the densities shown in the first row. Third row, first column: the difference
log ρn − log ρp between the logarithms of the neutron and proton densities; second column: the function (ρn − ρp)r

2/(N − Z)
obtained by applying the Hartree-Fock method with the Gogny force D1S (GoHF, dashed line), the Hartree-Fock-Bogoliubov
method with the Gogny force (GoHFB, solid line) and the Hartree-Fock method with the Skyrme force SLy4 (SkHF, dotted
line); third column: single-particle contributions ρν to the density ρ for protons (solid lines) and neutrons (dashed lines). The
lj quantum numbers of the orbit with largest ρν at r = 12 fm are indicated in the plot.

More significant differences can be noticed between the
results obtained with the SLy4 and the Gogny forces (both
without pairing), especially for large r and near r = 0.

It is interesting to analyze how the different single-
particle states contribute to the total density ρ. Denoting
by ρν the contribution of single-particle state ν:

ρ =
∑

ν

ρν (4)

the relative contributions ρν/ρ of the occupied single-
particle orbits are plotted in the rightmost diagram of the
lowest row in fig. 8. These results have been obtained from
HF calculations with the Gogny force. One observes that
all single particle states except one, contribute more or less
the same amount in the whole region r = 0–12 fm. At large
distance and for r � 0, the f7/2 one-neutron state strongly

dominates all the other ones. This clearly indicates that
the halo is a single particle effect in this nucleus, which
confirms earlier results obtained with Skyrme forces [1]
and with the relativistic mean-field theory [3].

The middle plot of the lowest row in fig. 8 shows the
function (ρn−ρp) ·r2/(N −Z) calculated within the three
approaches GoHFB (solid line), GoHF (dashed line), and
SkHF (dotted line). This function is strongly correlated
with the magnitude of halo factors.

Similar results for the other eighteen halo nuclei listed
in table 1 are shown in the next eight figs. 9a, 9b, 10a,
10b, 11a, 11b, 12a, and 12b. Figures “a” correspond to
the lighter Ca-Sn nuclei and figures “b” to the heavier
Sn-U. Every multiplot presents the same quantity versus
r for nine different nuclei.
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Fig. 10. a) Relative contributions ρν/ρ of the single-particle proton (dashed lines) and neutron (solid lines) states ν to the
total density ρ as functions of the radial distance r for the nine lighter halo-nuclei 48Ca to 112Sn. b) Same as a) for the nine
heavier halo-nuclei 124Sn to 238U.
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Fig. 11. a) The function (ρn − ρp)r
2/(N −Z) obtained from Hartree-Fock calculations with the Gogny force D1S (solid lines),

and with the Skyrme force SLy4 (dashed lines) versus the radial distance r for the nine lighter halo-nuclei 48Ca to 112Sn.
b) Same as a) for the nine heavier halo-nuclei 124Sn to 238U.
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Fig. 12. a) The function (ρn/N − ρp/Z)r2 obtained from Hartree-Fock-Bogoliubov calculations with the Gogny force for the
nine lighter halo-nuclei 48Ca to 112Sn. b) Same as a) for the nine heavier halo-nuclei 124Sn to 238U.
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In fig. 9, the differences log ρn − log ρp between the
logarithms of the neutron and proton densities are shown.
The solid lines have been obtained with the Gogny force
(GoHF), and the dashed ones with the SLy4 (SkHF) in-
teraction. The difference between the proton and neutron
densities grows with r and is larger for the Skyrme force
in lighter nuclei (9a) while, for the heavier ones (9b), the
Gogny force gives similar or larger density differences than
SLy4.

Figure 10 shows the contributions ρν of neutron (solid
lines) and proton (dashed lines) occupied single-particle
orbitals ν to the whole density ρ. One can see that in most
cases only one neutron state determines the magnitude of
the density tail. For lighter nuclei (10a), only 116Cd and
100Mo have more than one neutron state contributing to
the tail of the density. In heavier nuclei, fig. 10b, the Sn
and Te isotopes show a similar behaviour, with two neu-
tron orbitals contributing to the density tail. A very inter-
esting situation is found in 144Sm where the contribution
that dominates corresponds to a proton state. Therefore a
proton halo can be expected in this nucleus. This is in line
with experimental data [1]. Unfortunately this is not the
case for 106Cd, which also has a proton-rich nuclear strato-
sphere. For every plot in fig. 10, the quantum numbers lj
of the orbital for which the contribution ρν is maximum
at large distance is indicated. The single-particle charac-
ter of the nuclear periphery has also been found in HF
calculations with the Skyrme force SkIII [1] and within
the relativistic mean-field theory [3].

The two fig. 11a, b show the function(ρn−ρp)r2/(N−Z)
versus r, for the eighteen halo nuclei. This quantity di-
rectly enters the integral for the halo factor, eq. (6), and
determines the neutron or proton halo in the nuclear pe-
riphery. HF results are shown both for the Gogny (solid
line) and the SLy4 (dashed line) forces. It is apparent on
these curves that the Skyrme force yields a slightly larger
neutron halo than the Gogny interaction.

Figures 12a and 12b illustrate the nuclear skin effect.
The r2-weighted difference between the average neutron
(ρn/N) and proton (ρp/Z) single-particle densities calcu-
lated with the Gogny force is plotted for each nucleus as
a functions of r. One can see that this quantity strongly
oscillates in the surface region, with variations that signif-
icantly differ in amplitude and shape, depending on the
nucleus considered.

4 Halo factor

In experiments probing the nuclear periphery using the
formation of antiproton atoms, antiprotons are catched
on hydrogen-like atomic orbitals and then annihilated on
the outer tail of the proton or neutron density. The halo
factor is defined as [1]

f �
Z

∑
s

Γ s
n

N
∑
s

Γ s
p

, (5)

where the summation goes over all the antiprotonic states
with meaningful annihilation widths Γ s

n(p) on proton (p)
or neutron (n) and s denotes the atomic state of the an-
tiproton.

The widths are calculated by integrating the density
of one kind of nucleon with the square of the antiproton
wave function ψs(r):

Γ s
n(p) =

∫
ρn(p)

∣∣ψs
n(p)(r)

∣∣2P (r)r2 dr. (6)

ψs(r) is taken as the solution of the Schrödinger equa-
tion for a hydrogen-like antiprotonic atom. The nucleus
is assumed to be spherical. Let us point out that the nu-
clear radius is much smaller than typical antiproton or-
bital radii.

The factor P (r) describes the probability that the an-
nihilation products of the antiproton will not be absorbed
by the nucleus. This factor, which should depend on the
atomic state of the antiproton, will be assumed here to be
independent of it. P (r) takes into account the deep hole
creation probability Pdh(r) and the pion escaping prob-
ability Pπ,esc(r). For the ground-state nuclear periphery,
only cold annihilation is important. Hot annihilation has
to be eliminated from the widths Γ , which leads to the
P (r) = constant approximation.

In fig. 13 the halo factors obtained with the Gogny and
Skyrme forces are compared with the experimental data
taken from ref. [1]. The variations of experimental halo
factors from nucleus to nucleus are satisfactorily repro-
duced by the two theoretical calculations. In most cases,
the Gogny force gives smaller halo factors than the Skyrme
interaction, which is consistent with the fact that the
Gogny D1S parameterization underestimates radii when
correlations beyond the mean field are neglected. This is
especially true in the five heavier nuclei which all are de-
formed. The halo factors derived with SLy4 appear in good
quantitative agreement with experimental data. In partic-
ular, the unusually large halo factor in 176Yb is well repro-
duced. Let us note that both effective interactions signif-
icantly underestimate the halo factors of the two Te iso-
topes, which indicates that the halo structure of these two
spherical nuclei is not properly described by the present
microscopic calculations. One reason for these discrepan-
cies may be that correlations beyond the mean-field ap-
proximation are necessary for a correct description of neu-
tron densities at large distance in these nuclei.

5 Conclusions

Hartree-Fock-Bogoliubov calculation in spherical symme-
try have been performed with the Gogny force for nineteen
halo nuclei. The parameters of the HO bases employed—
maximum number of shells NMAX and frequency h̄ω—
have been carefully chosen in order to ensure the conver-
gence of the total binding energy, and to describe the large
distance behaviour of nucleon density distributions.

The following conclusions can be drawn from the
present investigation:
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Fig. 13. The halo factors of experimentally known halo-nuclei
obtained from Hartree-Fock-Bogoliubov calculations with the
Gogny force D1S (stars joined by the short-dashed lines) and
from Hartree-Fock calculations with the Skyrme forces SLy4
(crosses joined by the long-dashed line), compared with exper-
imental data (plusses with error-bars joined by solid line) from
ref. [1].

1. One- and two-neutron separation energies are repro-
duced with the Gogny force within ±1MeV in most
of the spherical nuclei studied. In deformed nuclei, the
spherical symmetry assumption leads to an underesti-
mation of S2n’s and an overestimation of Sn’s that can
reach 3MeV.

2. The Gogny force D1S gives an overall satisfactory ac-
count of the nuclear periphery which could probably
be improved by taking into account deformation ef-
fects and, to a lesser extent, correlations beyond the
mean field. Inclusion of pairing correlations in the self-
consistent calculation induces only weak changes in the
proton and neutron density distributions, and has a
negligible effect on halo factors.

3. The variations of halo factors from nucleus to nu-
cleus obtained with the Gogny force and the SLy4
interaction are in good agreement with experimental
data. From the present spherical mean-field calcula-
tions, SLy4 gives a larger neutron halo effect than the
Gogny force, in better agreement with experiments.

As almost half of experimentally known halo-nuclei are
well deformed, a test of the influence of including nuclear
deformation in the self-consistent calculations is clearly
needed. In the case of the Gogny force, a similar test con-
cerning the effect of the ground-state correlations associ-
ated with oscillations of the mean field—large amplitude
collective motion in soft nuclei, RPA ground-state corre-
lations in rigid nuclei—and of possible shape coexistence
phenomena should also be performed. This is left for fu-
ture work.

The work is partly supported by the Polish Committee of Sci-
entific Research under Contract No. 2P03B 011 12.
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